翻訳と辞書
Words near each other
・ Schwarzer See (Rheinsberg)
・ Schwarzer See (Schlemmin)
・ Schwarzer See (Schwarz)
・ Schwarzer See (Zickhusen)
・ Schwarz alternating method
・ Schwarz Gastropoden Formation
・ Schwarz greift ein
・ Schwarz Gruppe
・ Schwarz in Schwarz
・ Schwarz integral formula
・ Schwarz lemma
・ Schwarz minimal surface
・ Schwarz reflection principle
・ Schwarz Rot Gold
・ Schwarz Stein
Schwarz triangle
・ Schwarz und weiß wie Tage und Nächte
・ Schwarz Weiss
・ Schwarz zu blau
・ Schwarz's list
・ Schwarz, Germany
・ Schwarz-Weiß Alstaden
・ Schwarz-Weiß Essen
・ Schwarz/Weiss
・ Schwarza
・ Schwarza (Black Forest)
・ Schwarza (Hasel)
・ Schwarza (Ilm)
・ Schwarza (Leitha)
・ Schwarza (Saale)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schwarz triangle : ウィキペディア英語版
Schwarz triangle
In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in .
These can be defined more generally as tessellations of the sphere, the Euclidean plane, or the hyperbolic plane. Each Schwarz triangle on a sphere defines a finite group, while on the Euclidean or hyperbolic plane they define an infinite group.
A Schwarz triangle is represented by three rational numbers (''p'' ''q'' ''r'') each representing the angle at a vertex. The value ''n/d'' means the vertex angle is ''d''/''n'' of the half-circle. "2" means a right triangle. When these are whole numbers, the triangle is called a Möbius triangle, and corresponds to a ''non''-overlapping tiling, and the symmetry group is called a triangle group. In the sphere there are 3 Möbius triangles plus one one-parameter family; in the plane there are three Möbius triangles, while in hyperbolic space there is a three-parameter family of Möbius triangles, and no exceptional objects.
== Solution space ==
A fundamental domain triangle, (''p'' ''q'' ''r''), can exist in different spaces depending on the value of the sum of the reciprocals of these integers:
:
\begin
\frac 1 p + \frac 1 q + \frac 1 r & > 1 \text \\()
\frac 1 p + \frac 1 q + \frac 1 r & = 1 \text \\()
\frac 1 p + \frac 1 q + \frac 1 r & < 1 \text
\end

This is simply a way of saying that in Euclidean space the interior angles of a triangle sum to π, while on a sphere they sum to an angle greater than π, and on hyperbolic space they sum to less.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schwarz triangle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.